Code: ME3T2

II B.Tech - I Semester – Regular/Supplementary Examinations November 2018

BASIC THERMODYNAMICS (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

DATA BOOKS ARE ALLOWED

PART – A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

- 1. a) Differentiate between closed and open thermodynamic systems. Give examples.
 - b) Define process and cycle. What is a quasi equilibrium process?
 - c) What is meant by state and property of a substance? Classify thermodynamic properties.
 - d) Show triple point of water on P-T diagram.
 - e) Write the processes involved in dual cycle.
 - f) What are the classical statements given by Kelvin-Planck and Clausius for second law of Thermodynamics?
 - g) Define Gibb's and Helmholtz's functions.
 - h) Distinguish between thermal efficiency and coefficient of performance.

- i) If 250 kJ/s of heat is transferred from atmosphere at 7° C to the room at 25° C by a heat pump working on reversed Carnot cycle, what is the power required?
- j) What is dryness fraction of a pure substance? Name the devices for measuring dryness fraction of steam.
- k) Draw the p-v diagrams of Sterling and Ericsson cycles indicating the salient points.

PART – B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

2. a) To a closed system 150 KJ of work is supplied. If the initial volume is 0.6 m^3 and the pressure of the system changes as p=8 - 4V where p is in bar and V is in m^3 , determine the final volume and pressure of the system.

8 M

- b) Air contained in a cylinder comprises the system. The cycle is completed as follows: 8 M
 - (i) Piston does 85 kJ of work on air during its compression stroke while 40 kJ of heat is rejected to the surroundings which is mainly water in the cylinder jackets.
 - (ii) On the expansion stroke, air does 115 kJ of work on the piston. Determine the quantity of heat added to the system in expansion stroke. Draw a suitable p-V diagram representing the cycle.

- 3. a) Derive S.F.E.E stating the assumptions first. 8 M
 - b) One kg of Ethane (Perfect gas) is compressed from 1.1 bar, 27^{0} C according to a law: pV^{1.3} = constant, until the pressure is 6.6 bar. Calculate the heat flow to or from the cylinder walls. Given: Molecular weight of Ethane = 30, $C_{p} = 1.75$ kJ/kg. 8 M
- 4. a) Explain entropy and disorder. Prove that entropy is a property of a system.8 M
 - b) Calculate the entropy change of the universe as a result of the following processes: 8 M
 - (i) A copper block of 600 g mass and with heat capacity of 150 J/K at 100° C is placed in a pond at 8° C.
 - (ii) The same block at 8^{0} C is dropped from a height of 100 m into the pond.

(iii) Two such blocks at 100° C and 0° C are joined.

- 5. a) Define: Internal energy, enthalpy and entropy of steam. Write the Clausius-Clapeyron equation and explain its significance.8 M
 - b) Explain Dalton's law of partial pressure and Avogadro's law of additive volumes.
 8 M

- 6. a) Derive an expression for air standard efficiency of Brayton cycle.8 M
 - b) The compression ratio in an air-standard Otto cycle is 8. At the beginning of compression process, the pressure is 1 bar and the temperature is 300K. The heat transfer to the air per cycle is 1900 kJ/kg of air. Calculate: 8 M (i) η_{Th} and (ii) M.E.P